Crystallography of Representative MOFs Based on Pillared Cyanonickelate (PICNIC) Architecture

نویسندگان

  • Winnie Wong-Ng
  • Jeffrey T. Culp
  • Yu-Sheng Chen
چکیده

The pillared layer motif is a commonly used route to porous coordination polymers or metal organic frameworks (MOFs). Materials based on the pillared cyano-bridged architecture, [Ni’(L)Ni(CN)4]n (L = pillar organic ligands), also known as PICNICs, have been shown to be especially diverse where pore size and pore functionality can be varied by the choice of pillar organic ligand. In addition, a number of PICNICs form soft porous structures that show reversible structure transitions during the adsorption and desorption of guests. The structural flexibility in these materials can be affected by relatively minor differences in ligand design, and the physical driving force for variations in host-guest behavior in these materials is still not known. One key to understanding this diversity is a detailed investigation of the crystal structures of both rigid and flexible PICNIC derivatives. This article gives a brief review of flexible MOFs. It also reports the crystal structures of five PICNICS from our laboratories including three 3-D porous frameworks (Ni-Bpene, NI-BpyMe, Ni-BpyNH2), one 2-D layer (Ni-Bpy), and one 1-D chain (Ni-Naph) compound. The sorption data of BpyMe for CO2, CH4 and N2 is described. The important role of NH3 (from the solvent of crystallization) as blocking ligands which prevent the polymerization of the 1-D chains and 2-D layers to become 3D porous frameworks in the Ni-Bpy and Ni-Naph compounds is also addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designed synthesis of a metal cluster-pillared coordination cage.

An unprecedented polynuclear metal cluster-pillared triangular prism was built by a macrocycle-directing strategy. Discrete architectures of three silver cluster-involved metallosupramolecules were characterized by single crystal X-ray crystallography and spectroscopy studies.

متن کامل

A Zn-based, pillared paddlewheel MOF containing free carboxylic acids via covalent post-synthesis elaboration.

A Zn-based, mixed-ligand (pillared paddlewheel), metal-organic framework (MOF) has been covalently and quantitatively decorated with free carboxylic acids to demonstrate the utility of covalent post-synthesis modification in the construction of otherwise inaccessible carboxy-functionalized MOFs.

متن کامل

Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs.

A pillared-paddlewheel type metal-organic framework material featuring bodipy- and porphyrin-based struts, and capable of harvesting light across the entire visible spectrum, has been synthesized. Efficient-essentially quantitative-strut-to-strut energy transfer (antenna behavior) was observed for the well-organized donor-acceptor assembly consituting the ordered MOF structure.

متن کامل

Mixed-linker solid solutions of functionalized pillared-layer MOFs - adjusting structural flexibility, gas sorption, and thermal responsiveness.

Flexible metal-organic frameworks (MOFs) can undergo fascinating structural transitions triggered by external stimuli, such as adsorption/desorption of specific guest molecules or temperature changes. In this detailed study we investigate the potentials and limitations of tuning framework flexibility systematically by exploiting the powerful concept of mixed-linker solid solutions. We chose the...

متن کامل

Post-assembly transformations of porphyrin-containing metal-organic framework (MOF) films fabricated via automated layer-by-layer coordination.

Herein, we demonstrate the robustness of layer-by-layer (LbL)-assembled, pillared-paddlewheel-type MOF films toward conversion to new or modified MOFs via solvent-assisted linker exchange (SALE) and post-assembly linker metalation. Further, we show that LbL synthesis can afford MOFs that have proven inaccessible through other de novo strategies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016